タンパク質のメチル化は、真核生物における普遍的かつ重要な翻訳後修飾 (PTM) であり、主にリジン残基とアルギニン残基に生じます。DNAやRNAのメチル化と混同しないように注意していただきたいのですが、タンパク質やDNA/RNAのメチル化はどれも、細胞のエピジェネティクスに大きな影響を及ぼします。
アルギニンのメチル化は、遺伝子の転写やRNAの代謝、DNA損傷の修復、シグナル伝達の制御に関与していることが分かっています。3種類のタイプが存在することが分かっているメチル化アルギニンは、ヒストンテールだけでなく、核や細胞質を行き来するタンパク質によくみられます1。また、このPTMは、様々な細胞プロセスにおける重要な役割を担っているため、アルギニンのメチル化を標的として阻害する治療に対し、がん細胞が非常に高い感受性を示すことはさほど驚くことではありません。
では、タンパク質メチル化の検出に、プロテオミクスをどのように使うことができるのでしょうか?また、メチル化アルギニンの異なるタイプを、どのようにして識別できるのでしょうか?
<< ブログの最後に記載する製品リストを見る場合はこちらをクリック>>
PTMScan®メチロームプロテオミクスは、CSTの私の同僚が開発した、特許取得済みのPTMScanアッセイを活用する画期的な新技術であり、これにより科学者は、液体クロマトグラフィー/質量分析 (LC-MS) でのプロファイリング解析用にメチル化ペプチドを濃縮できます (図1) 2。
PTMScan methylation-basedキットは、以下のメチル化アルギニン残基やメチル化リジン残基に特異的な濃縮が可能です:
PTMScanメチロームプロテオミクスが初めて市場に出た2014年、弊社はこの技術を、ヒトとマウスの細胞株における1000箇所を超えるアルギニンメチル化部位と数百のリジンメチル化部位を同定に使用しました。
Guots氏らにより、Molecular & Cellular Proteomics誌にImmunoaffinity Enrichment and Mass Spectrometry Analysis of Protein Methylationというタイトルで発表されたこの研究は、すでに同定済みのタンパク質のメチル化を確認しただけでなく、特定済みのタンパク質のメチル化部位の総数が2倍以上になりしました2。
興味深いことに、これらの部位のいくつかは、自己リン酸化している可能性があるEZH1やEZH2、SETDB1などの既知のメチルトランスフェラーゼ上でみつかりました。この結果から、特定のメチル化酵素の活性は、フィードバックループ機構を介して制御されている可能性が考えられます。この発見は、エピジェネティックな意味合いを持つかもしれません3。
CSTのジメチルアルギニン抗体の最大の利点は、対称性メチル化アルギニン (SDMA) と非対称性メチル化アルギニン (ADMA) を区別できることです。これらは質量が同じであるため、従来の質量分析技術では区別が困難でした。
SDMAとADMAの区別がなぜ重要なのでしょうか?この能力は、がん研究に役立ちます。
PTMScanメチロームプロテオミクスを用いた複数の研究室による結果から、RNAスプライシング因子が、タンパク質アルギニンメチルトランスフェラーゼ (PRMT) の重要な標的であることが同定されました4,5,6。 PRMTは、9種類のメンバーを含むタンパク質ファミリーであり、アルギニン残基にメチル基を1つまたは2つ付加し、対称性ジメチル化アルギニンおよび非対称型ジメチル化アルギニンを含む、エチル化アルギニンを生成します (図2)。PRMTは、多くのタイプのがんで過剰発現しており、PRMT5は、SDMAの形成に関与する主なアルギニンメチルトランスフェラーゼです1,4,5。
PRMT5によって対称的にジメチル化されるタンパク質の中には、RNAスプライシングのメンバーが含まれており、PRMT5を阻害すると、がん化に関与する主要なタンパク質が失われることが分かっています7。 がん細胞ではPRMT5の発現レベルが上昇していることが多く、PRMT5の活性はSDMAレベルと相関しています。そのため、がん研究においてメチル化アルギニンの対称型を検出する能力は重要です。
上述したアルギニンのメチル化を検出するキットに加え、 PTMScan® Pan-Methyl Lysine Kit #14809やPTMScan® HS Pan-Methyl Lysine Kit #28411は、3タイプのリジンのメチル化(モノ、ジ、トリメチルリジン) すべてについてバランスのとれた濃縮が可能です。これに対して、PTMScan® Mono-Methyl Lysine Motif Kit #16892は、モノメチルリジンの濃縮に特化しています。メチル化されたリジン部位の存在量は、アルギニンのメチル化よりもかなり低いものの、リジンのメチル化の異常は、神経疾患や発達障害、がんと関連します。
PTMScanメチローム技術を用いた世界中の研究室の成果により、メチル化タンパク質の新規リジンおよびアルギニンのメチル化部位が発見されており、様々な細胞タイプにおける発がんメカニズムの解明に役立っています5,8。
同定されたリジンとアルギニンのメチル化部位については、CSTが無料で提供するPTMのオンラインデータベースPhosphoSitePlus をご覧ください
重要なことは、PTMScanメチローム技術を定量的LC-MS/MSと組み合わせることにより、一連の実験で数百から数千ものメチル化部位を発見し、その変化の大きさを測定できるということです。
PTMScanメチローム抗体は、科学者にとって重要なツールであり、細胞株や組織、特にメラノーマやリンパ腫、膵臓がんで生じるタンパク質メチル化の変化を明らかにするのに役立っています。
*上記にリストされたパイロットキットは、3回の濃縮のために十分なイムノアフィニティービーズとIAPバッファーを提供する一方、フルキットは10回の濃縮のために十分なものを提供します。
上記の製品リストは、PTMScan HSキットを含み、ここでHSは磁気ビーズと組み合わされていることを指定します。これは実験台でのワークフローを単純化し、重要なことに、これらのキットはより少ないサンプルしか必要とせずに、自動化を受け入れます。
サイエンティフィックマーケティングライターであり、CSTのブログマネージャーであるAlexandra Foleyが、本ブログ記事の執筆に協力しました。23-BPA-72850